Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Intervalo de ano de publicação
2.
Science ; 376(6598): 1215-1219, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679394

RESUMO

Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.


Assuntos
Organismos Aquáticos , Biomassa , Peixes , Temperatura Alta , Invertebrados , Comportamento Predatório , Animais , Aquecimento Global , Oceanos e Mares
3.
J Phycol ; 57(6): 1777-1791, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570392

RESUMO

Macroalgal holobiont studies involve understanding interactions between the host, its microbiota, and the environment. We analyzed the effect of bacteria-kelp interactions on phenotypic responses of two genetically distinct populations of giant kelp, Macrocystis pyrifera (north and south), exposed to different nitrogen (N) concentrations. In co-culture experiments with different N concentration treatments, we evaluated kelp growth responses and changes in three specific molecular markers associated with the N cycle, both in epiphytic bacteria (relative abundance of nrfA-gene: cytochrome c nitrite reductase) and macroalgae (expression of NR-gene: nitrate reductase; GluSyn-gene: glutamate synthase). Both kelp populations responded differently to N limitation, with M. pyrifera-south sporophytes having a lower specific growth rate (SGR) under N-limiting conditions than the northern population; M. pyrifera-north sporophytes showed no significant differences in SGR when exposed to low-N and high-N concentrations. This corresponded to a higher GluSyn-gene expression in the M. pyrifera-north sporophytes and the co-occurrence of specific nrfA bacterial taxa. These bacteria may increase ammonium availability under low-N concentrations, allowing M. pyrifera-north to optimize nutrient assimilation by increasing the expression of GluSyn. We conclude that bacteria-kelp interactions are important in enhancing kelp growth rates under low N availability, although this effect may be regulated by the genetic background of kelp populations.


Assuntos
Kelp , Macrocystis , Bactérias/genética , Nitrogênio
4.
Front Plant Sci ; 12: 622150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276713

RESUMO

Solar radiation effects on the ecophysiology and biochemical responses of the brown macroalga Macrocystis pyrifera (L.) C. Agardh were evaluated using a mesocosm approach in Southern Chile. Treatments with different radiation attenuations were simulated with three vertical attenuation coefficients: (1) total (Kd = 0.8 m-1), (2) attenuated (Kd = 1.2 m-1), and (3) low (Kd = 1.6 m-1) radiation levels. Nutrient concentration and temperature did not show differences under the three light conditions. Photosynthetic activity was estimated by in vivo chlorophyll a (Chla) fluorescence under the three light treatments as an isolated physical factor in both in situ solar radiation in the field. This was achieved using a pulse amplitude-modulated (PAM) fluorometera-Diving PAM (in situ). Photosynthetic activity and biochemical composition were measured in winter during two daily cycles (1DC and 2DC) in different parts of the thalli of the plant: (1) canopy zone, (2) middle zone, and (3) down zone, associated with different depths in the mesocosm system. Nevertheless, the in situ electron transport rate (ETR in situ ) was higher in the exposed thalli of the canopy zone, independent of the light treatment conditions. The concentration of phenolic compounds (PC) increases in the down zone in the first daily cycle, and it was higher in the middle zone in the second daily cycle. The Chla increased in the morning time under total and attenuated radiation in the first daily cycle. Solar radiation increasing at midday prompted the photoinhibition of photosynthesis in the canopy zone but also an increase in productivity and phenol content. Therefore, light attenuation in the water column drove key differences in the photo-physiological responses of M. pyrifera, with the highest productivity occurring in thalli positioned in the canopy zone when exposed to solar irradiance.

6.
Nature ; 593(7858): E12, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33903771

RESUMO

A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03508-0.

7.
Nature ; 591(7851): 551-563, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762770

RESUMO

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.


Assuntos
Aquicultura/história , Abastecimento de Alimentos/história , Desenvolvimento Sustentável/história , Ração Animal , Animais , Animais Selvagens , Pesqueiros , Peixes , Água Doce , História do Século XX , História do Século XXI , Humanos , Internacionalidade , Oceanos e Mares , Frutos do Mar
8.
Sci Rep ; 11(1): 2510, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510300

RESUMO

The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3- assimilation, and enhanced expression of metabolic-genes involved in the NO3- and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3- and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species' response to climate change.

9.
Evol Appl ; 13(5): 905-917, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431742

RESUMO

The objective of this study was to test, using a field experiment, the effect of genotypic diversity on productivity of farmed populations (Ancud and Chaica, Chile) of the domesticated red alga Agarophyton chilense (formerly known as Gracilaria chilensis), a species considered as economically important in Chile. Monoclonal and polyclonal (4 and 8 genotypes) subplots were outplanted into the mid intertidal in Metri Bay (Puerto Montt, Chile) during summer, a season in which A. chilense face higher temperatures (>18°C) and low nitrogen availability (<4.00 µmol). Ancud farm genotypes show higher growth rates in the monoclonal rather than the two polyclonal subplots. A similar tendency, yet not significant, was discernible in Chaica. In addition, whatever the population of origin of the thalli, no effect of genotypic diversity was detected neither on the agar yield and its quality, nor on the epiphyte load. Such unexpected results of a higher performance in plots with a lower genotypic diversity could be explained (a) by human-assisted selection for dominant-best-performing genotypes that could counterbalance the negative effect caused by the low genotypic diversity in farms and (b) by the fact that the organisms inhabiting the algal mats do not impact the fitness of their host. Overall, the results obtained here suggest that despite farm induced selection lead to impoverished pools of genotypes, they may also have a positive effect of on the resistance of farmed populations to seasonal stressors. However, whether this may have a secondary negative effect on the longer term in a fluctuating environment remains to be determined, but may be avoided by adopting strategy of selection favoring different genotypes in space and time, as implemented in forestry.

10.
Rev Chilena Infectol ; 35(3): 299-308, 2018.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30534910

RESUMO

The emergence and dissemination of antimicrobial-resistant bacteria (ARB) is currently seen as one of the major threats to human and animal public health. Veterinary use of antimicrobials in both developing and developed countries is many-fold greater than their use in human medicine and is an important determinant in selection of ARB. In light of the recently outlined National Plan Against Antimicrobial Resistance in Chile, our findings on antimicrobial use in salmon aquaculture and their impact on the environment and human health are highly relevant. Ninety-five percent of tetracyclines, phenicols and quinolones imported into Chile between 1998 and 2015 were for veterinary use, mostly in salmon aquaculture. Excessive use of antimicrobials at aquaculture sites was associated with antimicrobial residues in marine sediments 8 km distant and the presence of resistant marine bacteria harboring easily transmissible resistance genes, in mobile genetic elements, to these same antimicrobials. Moreover, quinolone and integron resistance genes in human pathogens isolated from patients in coastal regions adjacent to aquaculture sites were identical to genes isolated from regional marine bacteria, consistent with genetic communication between bacteria in these different environments. Passage of antimicrobials into the marine environment can potentially diminish environmental diversity, contaminate wild fish for human consumption, and facilitate the appearance of harmful algal blooms and resistant zoonotic and human pathogens. Our findings suggest that changes in aquaculture in Chile that prevent fish infections and decrease antimicrobial usage will prove a determining factor in preventing human and animal infections with multiply-resistant ARB in accord with the modern paradigm of One Health.


Assuntos
Antibacterianos/efeitos adversos , Aquicultura/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Infecções Bacterianas/prevenção & controle , Chile , Monitoramento Ambiental/métodos , Humanos , Quinolonas/efeitos adversos , Salmão , Tetraciclinas/efeitos adversos
11.
J Phycol ; 54(6): 860-869, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30222862

RESUMO

In terrestrial plants, it is well known that genetic diversity can affect responses to abiotic and biotic stress and have important consequences on farming. However, very little is known about the interactive effects of genetic and environmental factors on seaweed crops. We conducted a field experiment on Gracilaria chilensis to determine the effect of heterozygosity and nutrient addition on two southern Chilean farms: Ancud and Chaica. In addition to growth rate and productivity, we measured photosynthetic responses, photosynthetic pigment concentration (chlorophyll a and phycobiliproteins), C:N ratio (C:N), and epiphytic load. Nutrient addition affected the growth rate, productivity, phycobilin, and C:N content, but not the epiphytic load. These results were independent of the heterozygosity of the strains used in the experiments. Interestingly, depending on the sampled sites, distinct photosynthetic responses (i.e., maximal quantum yield, Fv /Fm , and maximal electron transport rate, ETRmax ) to nutrient addition were observed. We propose that thallus selection over the past few decades may have led to ecological differentiation between G. chilensis from Chaica and Ancud. The lack of effect of heterozygosity on growth and physiological responses could be related to the species domestication history in which there is a limited range of genetic variation in farms. We suggest that the existing levels of heterozygosity among our thalli is not sufficient to detect any significant effect of genetic diversity on growth or productivity in Metri bay, our experimental site located close to the city of Puerto Montt, during summer under nitrogen limiting conditions.


Assuntos
Aquicultura , Variação Genética , Gracilaria/fisiologia , Nutrientes/fisiologia , Proteínas de Algas/metabolismo , Carbono/metabolismo , Chile , Clorofila A/metabolismo , Geografia , Gracilaria/genética , Nitrogênio/metabolismo , Fotossíntese , Ficobiliproteínas/metabolismo
12.
Sustain Sci ; 13(4): 1105-1120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147798

RESUMO

Global seafood provides almost 20% of all animal protein in diets, and aquaculture is, despite weakening trends, the fastest growing food sector worldwide. Recent increases in production have largely been achieved through intensification of existing farming systems, resulting in higher risks of disease outbreaks. This has led to increased use of antimicrobials (AMs) and consequent antimicrobial resistance (AMR) in many farming sectors, which may compromise the treatment of bacterial infections in the aquaculture species itself and increase the risks of AMR in humans through zoonotic diseases or through the transfer of AMR genes to human bacteria. Multiple stakeholders have, as a result, criticized the aquaculture industry, resulting in consequent regulations in some countries. AM use in aquaculture differs from that in livestock farming due to aquaculture's greater diversity of species and farming systems, alternative means of AM application, and less consolidated farming practices in many regions. This, together with less research on AM use in aquaculture in general, suggests that large data gaps persist with regards to its overall use, breakdowns by species and system, and how AMs become distributed in, and impact on, the overall social-ecological systems in which they are embedded. This paper identifies the main factors (and challenges) behind application rates, which enables discussion of mitigation pathways. From a set of identified key mechanisms for AM usage, six proximate factors are identified: vulnerability to bacterial disease, AM access, disease diagnostic capacity, AMR, target markets and food safety regulations, and certification. Building upon these can enable local governments to reduce AM use through farmer training, spatial planning, assistance with disease identification, and stricter regulations. National governments and international organizations could, in turn, assist with disease-free juveniles and vaccines, enforce rigid monitoring of the quantity and quality of AMs used by farmers and the AM residues in the farmed species and in the environment, and promote measures to reduce potential human health risks associated with AMR.

13.
Mar Environ Res ; 135: 93-102, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428528

RESUMO

Finfish aquaculture is an activity that has experienced an explosive global development, but presents several environmental risks, such as high nitrogen outputs with potential eutrophication consequences. Therefore, the integration of seaweed aquaculture with the aim of decreasing nitrogen emissions associated with intensive salmon farming has been proposed as a bioremediation solution. Ecophysiological knowledge about seaweeds cultured close to farming cages is, however, still rudimentary. We experimentally studied the growth and physiological responses of Macrocystis pyrifera (Linnaeus) C. Agardh in a suspended culture system near a commercial salmon farm at three culture depths in order to understand its productivity performance. The results showed maximum growth responses at intermediate depths (3 m) as opposed to near the surface (1 m) or at a deeper culture level (6 m). At 6 m depth, light limitations were detected, whereas the sporophytes growing at 1 m depth responded to high irradiances, especially in late spring and summer, where they were more intensely exposed to decay of photosynthesis than individuals from other depths. Accordingly, photosynthetic pigment concentrations (chlorophyll a and c, and fucoxonthin) were higher during low-light seasons (winter and early spring) but decreased during the summer. On the other hand, although both nitrogen uptake and Nitrate Reductase (NR) activity varied seasonally, increasing significantly in spring and summer, these variables were not affected by culture depth. Therefore, the optimal culture depth of M. pyrifera near salmon farms appears to be a physiological integration between nitrogen supply and demand, which is modulated by plant acclimation to the seasonal change in light and temperature. The results allow to discuss about the environmental constrains of M. pyrifera in an ecophysiological context to improve the understanding of its aquaculture, and to contribute relevant information on the use of this species in bioremediation.


Assuntos
Aquicultura , Monitoramento Ambiental , Macrocystis/fisiologia , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Animais , Clorofila A , Fazendas , Salmão
14.
Microb Ecol ; 75(1): 104-112, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28642992

RESUMO

Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Integrons , Plasmídeos/genética , Quinolonas/farmacologia , Água do Mar/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Aquicultura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peixes/crescimento & desenvolvimento , Peixes/microbiologia , Transferência Genética Horizontal , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/metabolismo , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/isolamento & purificação
15.
Rev. chil. infectol ; 35(3): 299-308, 2018. graf
Artigo em Espanhol | LILACS | ID: biblio-959444

RESUMO

El aumento de la resistencia bacteriana múltiple a antimicrobianos es considerado una gran amenaza para la salud pública mundial y como generador de una importante crisis en el funcionamiento de los sistemas de salud. Esta crisis es discutida diariamente por los gobiernos y los parlamentos, las instituciones globales de salud, fundaciones benéficas y de científicos y de profesionales de la salud y también de consumidores de productos animales. En todos los países del orbe se ha identificado al uso de antimicrobianos en la crianza industrial de animales como un importante determinante en la selección de esta resistencia. Aprovechando la oportunidad que se ha planteado en Chile con el diseño del Plan Nacional Contra la Resistencia a los Antimicrobianos, hemos creído importante revisitar y actualizar sumariamente nuestros estudios sobre el uso de antimicrobianos en la acuicultura del salmón y de su potencial impacto en el ambiente y la salud humana y animal. Estos estudios indican que 95% de tres grupos de antimicrobianos importados al país, que incluyen tetraciclinas, fenicoles y quinolonas, son usados en medicina veterinaria y mayormente en la acuicultura del salmón. Nuestros estudios indican que el excesivo uso de estos antimicrobianos genera la presencia de residuos de antimicrobianos en el ambiente marino hasta 8 km de los sitios de acuicultura, los que seleccionan a bacterias con resistencia múltiple en dicho ambiente, ya que ellas contienen variados genes de resistencia a estos antimicrobianos. Estos genes de resistencia están contenidos en elementos genéticos móviles incluyendo plásmidos e integrones, los que son trasmitidos a otras bacterias permitiendo su potencial diseminación epidémica entre poblaciones bacterianas. Bacterias del ambiente marino contienen genes idénticos a los genes de resistencia a quinolonas e integrones similares a los de patógenos humanos, sugiriendo comunicación genética entre estas bacterias de diversos ambientes. Alrededor de los recintos de acuicultura, este uso exagerado de antimicrobianos contamina con ellos también a peces silvestres para consumo humano y potencialmente selecciona BRA en su carne y en los productos de acuicultura. El consumo de estos productos selecciona bacterias resistentes en el microbioma humano y facilita también el intercambio genético entre bacterias del ambiente acuático y la microbiota comensal y patógena humana. El pasaje de antimicrobianos al ambiente marino disminuye la diversidad en él, y potencialmente podría facilitar la aparición de florecimientos de algas nocivas, la infección de peces por patógenos piscícolas resistentes los antimicrobianos y la aparición de patógenos zoonóticos resistentes, incluyendo a Vibrio parahaemolyticus. Estos hallazgos sugieren que la prevención de infecciones en peces y la disminución del uso de antimicrobianos en su crianza, será en Chile un factor determinante en la prevención de infecciones humanas y animales con resistencia múltiple a los antimicrobianos, de acuerdo con el paradigma moderno e integral de Una Salud.


The emergence and dissemination of antimicrobial-resistant bacteria (ARB) is currently seen as one of the major threats to human and animal public health. Veterinary use of antimicrobials in both developing and developed countries is many-fold greater than their use in human medicine and is an important determinant in selection of ARB. In light of the recently outlined National Plan Against Antimicrobial Resistance in Chile, our findings on antimicrobial use in salmon aquaculture and their impact on the environment and human health are highly relevant. Ninety-five percent of tetracyclines, phenicols and quinolones imported into Chile between 1998 and 2015 were for veterinary use, mostly in salmon aquaculture. Excessive use of antimicrobials at aquaculture sites was associated with antimicrobial residues in marine sediments 8 km distant and the presence of resistant marine bacteria harboring easily transmissible resistance genes, in mobile genetic elements, to these same antimicrobials. Moreover, quinolone and integron resistance genes in human pathogens isolated from patients in coastal regions adjacent to aquaculture sites were identical to genes isolated from regional marine bacteria, consistent with genetic communication between bacteria in these different environments. Passage of antimicrobials into the marine environment can potentially diminish environmental diversity, contaminate wild fish for human consumption, and facilitate the appearance of harmful algal blooms and resistant zoonotic and human pathogens. Our findings suggest that changes in aquaculture in Chile that prevent fish infections and decrease antimicrobial usage will prove a determining factor in preventing human and animal infections with multiply-resistant ARB in accord with the modern paradigm of One Health.


Assuntos
Humanos , Animais , Poluentes Químicos da Água/análise , Aquicultura/métodos , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/efeitos adversos , Salmão , Tetraciclinas/efeitos adversos , Infecções Bacterianas/prevenção & controle , Chile , Monitoramento Ambiental/métodos , Quinolonas/efeitos adversos
16.
J Food Sci ; 82(2): 289-295, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28152188

RESUMO

Seaweeds are rich in different bioactive compounds with potential uses in drugs, cosmetics and the food industry. The objective of this study was to analyze macromolecular antioxidants or nonextractable polyphenols, in several edible seaweed species collected in Chile (Gracilaria chilensis, Callophyllis concepcionensis, Macrocystis pyrifera, Scytosyphon lomentaria, Ulva sp. and Enteromorpha compressa), including their 1st HPLC characterization. Macromolecular antioxidants are commonly ignored in studies of bioactive compounds. They are associated with insoluble dietary fiber and exhibit significant biological activity, with specific features that are different from those of both dietary fiber and extractable polyphenols. We also evaluated extractable polyphenols and dietary fiber, given their relationship with macromolecular antioxidants. Our results show that macromolecular antioxidants are a major polyphenol fraction (averaging 42% to total polyphenol content), with hydroxycinnamic acids, hydroxybenzoic acids and flavonols being the main constituents. This fraction also showed remarkable antioxidant capacity, as determined by 2 complementary assays. The dietary fiber content was over 50% of dry weight, with some samples exhibiting the target proportionality between soluble and insoluble dietary fiber for adequate nutrition. Overall, our data show that seaweed could be an important source of commonly ignored macromolecular antioxidants.


Assuntos
Antioxidantes/análise , Fibras na Dieta/análise , Rodófitas/química , Alga Marinha/química , Verduras/química , Chile , Ácidos Cumáricos/análise , Polifenóis/análise
17.
Front Microbiol ; 8: 2561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312241

RESUMO

Macroalgae are photosynthetic, multicellular, sessile eukaryotic organisms that offer diverse habitats for the colonization of epiphytic bacteria, therefore establishing biological interactions of diverse complexity. This review focusses on the interactions between macroalgae and their Epiphytic Bacterial Community (EBC); the main aims are to ascertain whether (1) the epiphytic bacterial groups differ at the phylum and genus levels of the macroalgae; (2) the methodologies used so far to study these microorganisms are related in any way to eventual variations of the EBCs on macroalgae; and (3) the EBC of macroalgae has a functional means rather a simple taxonomic grouping. Results showed firstly the taxonomic grouping of macroalgae does not explain the composition and structure of the EBCs. Secondly, the methodology used is important for describing EBCs; and thirdly, multiple bacteria can have the same function and thus to describe the functionality of EBCs it is important to recognize host-specific and generalist bacteria. We recommend the incorporation of a complementary approach between the taxonomic composition and the functional composition analyzes of EBCs, as well as the use of methodological tools that allow analysis of interactions between the EBCs and their hosts, based on the "holobiont" concept.

18.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849580

RESUMO

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Regiões Árticas , Mudança Climática , Oceanos e Mares
19.
Lancet Infect Dis ; 16(7): e127-e133, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27083976

RESUMO

Aquaculture uses hundreds of tonnes of antimicrobials annually to prevent and treat bacterial infection. The passage of these antimicrobials into the aquatic environment selects for resistant bacteria and resistance genes and stimulates bacterial mutation, recombination, and horizontal gene transfer. The potential bridging of aquatic and human pathogen resistomes leads to emergence of new antimicrobial-resistant bacteria and global dissemination of them and their antimicrobial resistance genes into animal and human populations. Efforts to prevent antimicrobial overuse in aquaculture must include education of all stakeholders about its detrimental effects on the health of fish, human beings, and the aquatic ecosystem (the notion of One Health), and encouragement of environmentally friendly measures of disease prevention, including vaccines, probiotics, and bacteriophages. Adoption of these measures is a crucial supplement to efforts dealing with antimicrobial resistance by developing new therapeutic agents, if headway is to be made against the increasing problem of antimicrobial resistance in human and veterinary medicine.


Assuntos
Aquicultura/métodos , Infecções Bacterianas/prevenção & controle , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Peixes , Humanos , Internacionalidade
20.
Environ Microbiol Rep ; 7(5): 803-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259681

RESUMO

Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens.


Assuntos
Aquicultura/métodos , Farmacorresistência Bacteriana , Microbiologia Ambiental , Genes Bacterianos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Chile , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Humanos , Dados de Sequência Molecular , Cidade de Nova Iorque , Plasmídeos/análise , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA